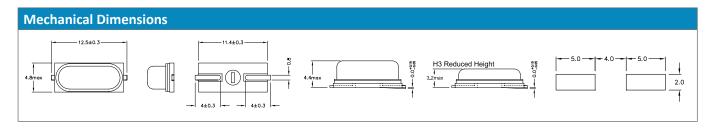


Features

- Suitable for RoHS reflow
- Available for tight stability & extended temperature range

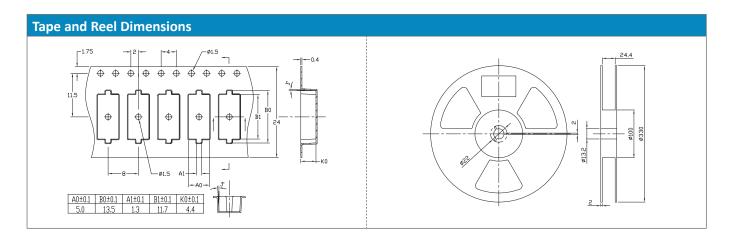

Applications

- Computers, Modems, Microprocessors
- Wireless Applications

General Specifications					
Frequency Range		3.200 to 70.000MHz			
Mode of Oscillation	Fundamental	3.200 to 32.768MHz			
	Third Overtone	24.576 to 70.000MHz			
Frenquency Tolerance at 25°C		±10 to ±30ppm (±30ppm standard)			
Frequency Stability over Temperature Range		See Stability vs. Temperature Table			
Storage Temperature		-55 to +125°C			
Aging per Year		±3ppm max.			
Load Capacticance C _L		10 to 32pF and Series Resonance			
Shunt Capacticance C ₀		7.0pF			
Equivalent Series Resistance (ESR)		See ESR Table			
Drive Level		1.0mW max.			
Insulation Resistance (MΩ)		500 at 100Vdc ±15Vdc			

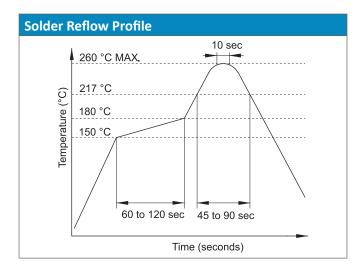
Equiv	Equivalent Series Resistance (ESR)						
Frequen	icy Range - MHz	Ω max.	Mode of Operation				
3.200	to 3.499	150	Fundamental / AT				
3.500	to 3.999	120					
4.000	to 5.999	100					
6.000	to 6.999	70					
7.000	to 8.999	60					
9.000	to 9.999	50					
10.000	to 12.999	40					
13.000	to 19.999	30					
20.000	to 30.999	20					
30.000	to 66.999	80	Third Overtone				

Frequency Stability vs. Temperature					
Operating Temperature	±10ppm	±20ppm	±30ppm	±50ppm	±100ppm
-20 to +70°C	0	0	0	0	0
-40 to +85°C	O*	0	0	•	0
*Operating Temperature -30 to +85°C				• :	standard O available



Part N	Part Numbering Guide								
Quarz- technik Code	Package	Nominal Frequency (in MHz)	Vibration Mode	Load Capa- citance	Frequency Tolerance	Operating Temperature Range	Frequency Stability	Package Option	Packaging
QT = Quarz- technik	CS = HC-49/U-S SMD 2-Pad	7 digits including the decimal point (f.ie. 12.0000)	F = AT-Fund	S = Series A = 8pF B = 12pF C = 16pF D = 18pF E = 20 pF	T1 = ±10ppm T2 = ±20ppm T3 = ±30ppm T5 = ±50ppm T0 = ±100ppm	C = -20 - +70°C I = -40 - +85°C	10 = ±10ppm 15 = ±15ppm 20 = ±20ppm 30 = ±30ppm 50 = ±50ppm 00 = ±100ppm	H3 = 3.2mm	M = 250pcs Tape&Reel R = 1000pcs Tape&Reel B = Bulk
Example: (Example: QTCS12.0000FBT3I30R bold letters = recommended standard specification					d standard specification			

Marking Code Guide


Contains frequency, Quarztechnik manufacturing code, production code (month and year) and load capacitance.

Month Codes					
January	А	July	G		
February	В	August	Н		
March	С	September	I		
April	D	October	J		
May	Е	November	K		
June	F	December	L		

Year Codes						
2020	0	2021	1	2022	2	
2023	3	2024	4	2025	5	
2026	6	2027	7	2028	8	
2029	9	2030	0	2031	1	

Load Capacitance Code in pF						
pF	PN Code	pF	PN Code			
12	Α	20	F			
18	В	22	G			
8	С	30	Н			
10	D	32	I			
16	E	S	S			

Example: First Line: 12.000 (Frequency) Second Line: QAOA (Quarztechnik - January - 2020 - 12 pF)

Environmental Specifications				
Mechanical Shock	MIL-STD-202, Method 213, C			
Vibration	MIL-STD-202, Method 201 & 204			
Thermal Cycle	MIL-STD, Method 1010, B			
Gross Leak	MIL-STD-202, Method 112			
Fine Leak	MIL-STD-202, Method 112			

